numpy.ndarray.flatten

ndarray.flatten(order='C')

 Return a copy of the array collapsed into one dimension.
>>> import numpy as np
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

numpy.ravel

numpy.ravel(a, order='C')

 Return a contiguous flattened array.
>>> import numpy as np
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.ravel(x)
array([1, 2, 3, 4, 5, 6])

>>> x.reshape(-1)
array([1, 2, 3, 4, 5, 6])

>>> np.ravel(x, order='F')
array([1, 4, 2, 5, 3, 6])

numpy.stack

numpy.stack(arrays, axis=0, out=None, *, dtype=None, casting='same_kind')

Join a sequence of arrays along a new axis.
>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.stack((a, b))
array([[1, 2, 3],
       [4, 5, 6]])

numpy.split

numpy.split(ary, indices_or_sections, axis=0)

 Split an array into multiple sub-arrays as views into ary.
>>> import numpy as np
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([0.,  1.,  2.]), array([3.,  4.,  5.]), array([6.,  7.,  8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([0.,  1.,  2.]),
 array([3.,  4.]),
 array([5.]),
 array([6.,  7.]),
 array([], dtype=float64)]